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ABSTRACT. There is a growing interest in the mathematics education community in the
notion of abstraction and its significance in the learning of mathematics. “Reducing abstrac-
tion” is a theoretical framework that examines learners’ behavior in terms of coping with
abstraction level. It refers to situations in which learners are unable to manipulate concepts
presented in a given problem; therefore, they unconsciously reduce the level of abstraction
of the concepts involved to make these concepts mentally accessible. This framework has
been used for explaining students’ conception in different areas of undergraduate mathe-
matics and computer science. This article extends the applicability scope of this framework
from undergraduate mathematics to school mathematics. We draw on recently published
research articles and exemplify how students’ behavior can be described in terms of various
interpretations of reducing abstraction level.
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1. INTRODUCTION

The notion of abstraction in mathematics and in mathematical learning has
recently received a lot of attention within the mathematics education re-
search community. The significance of this topic, as well as the magnitude
of community interest was highlighted at the Research Forum at the 2002
conference for the Psychology of Mathematics Education (PME) (Dreyfus
and Gray, 2002). The purpose of that research forum was to discuss and
critically compare three theories of abstraction, all aimed at providing a
means for the description of the processes involved in the emergence of
new mathematical mental structures. The forum was geared toward formu-
lating an integrated theoretical framework that may serve to explain a vast
collection of observations on mathematical thinking.

Building on the growing interest in the notion of abstraction, this arti-
cle examines abstraction from the perspective of “reducing abstraction” –
a mental process of coping with abstraction level of a given content or
task. The theoretical framework of reducing abstraction (Hazzan, 1999)
is usually associated with advanced mathematical thinking and topics in
undergraduate mathematics. In this article it is utilized for the analysis of
learners’ understanding of school mathematics.
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We start with an overview of theories of abstraction in mathematical
learning, aiming to describe the attention that this topic gets recently in
the mathematics education research community. Further, we introduce the
theme of reducing abstraction and situate it within the broad perspectives on
mathematical abstraction. We then illustrate the application of this theme by
examples taken from school mathematics. We conclude with the evaluation
of reducing abstraction as a tool for analyzing mental activities of learners
and with several suggestions for future research.

2. THEORIES OF ABSTRACTION IN MATHEMATICAL LEARNING

Abstraction is a complex concept that has many faces. As such, in a general
context it has attracted the attention of many psychologists and educators
(e.g., Beth and Piaget, 1966). In the more particular context of mathematics
education research, abstraction has been discussed from a variety of view-
points (cf. Tall, 1991; Noss and Hoyles, 1996; Frorer et al., 1997). There
is no consensus with respect to a unique meaning for abstraction; however,
there is an agreement that the notion of abstraction can be examined from
different perspectives, that certain types of concepts are more abstract than
others, and that the ability to abstract is an important skill for a meaningful
engagement with mathematics.

The aforementioned research forum was assembled in an attempt to
explore the variety of interpretations and the multi-faceted nature of ab-
straction. The theme of reducing abstraction, described in the next section,
builds on this variety. Like other theories of abstraction, the theme of reduc-
ing abstraction focuses on learner’s mental activities. We believe that it has
“the potential to provide insight into one of the central aspects of learning
mathematics and inform instructional practice” (Dreyfus and Gray, 2002,
p. 113).

3. THE THEME OF REDUCING ABSTRACTION

The theme of reducing abstraction (Hazzan, 1999) was originally developed
to explain students’ conception of abstract algebra. Abstract algebra is
the first undergraduate mathematical course in which students “must go
beyond learning ‘imitative behavior patterns’ for mimicking the solution
of a large number of variations on a small number of themes (problems)”
(Dubinsky et al., 1994, p. 268). Indeed, it is in the abstract algebra course
that students are asked, for the first time, to deal with concepts that are
introduced abstractly. That is, concepts are defined and presented by their
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properties and by an examination of “what facts can be determined just
from (the properties) alone” (Dubinsky and Leron, 1994, p. 42). This new
mathematical style of presentation requires learners to adopt new mental
processes to cope with the new approach as well as with the new kind of
mathematical objects. The theme of reducing abstraction emerged from
an attempt to explain students’ ways of thinking about abstract algebra
concepts. The following description of the theme of reducing abstraction
is largely based on Hazzan (1999).

The theme of reducing abstraction is based on three different interpre-
tations for levels of abstraction discussed in the literature: (a) abstraction
level as the quality of the relationships between the object of thought and
the thinking person, (b) abstraction level as reflection of the process–object
duality, and (c) abstraction level as the degree of complexity of the concept
of thought. It is important to note that these interpretations of abstraction
are neither mutually exclusive nor exhaustive. In what follows we briefly
describe each of these three interpretations of abstraction.

(a) The interpretation of abstraction level as the quality of the relation-
ships between the object of thought and the thinking person stems from
Wilensky’s (1991) assertion that whether something is abstract or con-
crete (or on the continuum between those two poles) is not an inherent
property of the thing, “but rather a property of a person’s relationship
to an object” (p. 198). In other words, for each concept and for each
person we may observe a different level of abstraction that reflects pre-
vious experiential connection between the two. The closer a person is
to an object and the more connections he/she has formed to it, the more
concrete (and the less abstract) he/she feels about it. On the basis of
this perspective, some students’ mental processes can be attributed to
their tendency to make an unfamiliar idea more familiar or, in other
words, to make the abstract more concrete.

This view is consistent with Hershkowitz, Schwarz and Dreyfus’
(2001) perspective that emphasizes the learner’s role in abstraction
processes. They claim that “abstraction depends on the personal his-
tory of the solver” (p. 197). Specifically, based on Davydov’s theory
(1972/1990) they claim that “when a new structure is constructed, it
already exists in a rudimentary form, and it develops through other
structures that the learner has already constructed” (p. 219). Accord-
ingly, abstraction is defined as “an activity of vertically reorganizing
previously constructed mathematics into a new mathematical struc-
ture.” Vertical mathematization is “an activity in which mathematical
elements are put together, structured, organized, developed, etc. into
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other elements, often in more abstract or formal form than the originals”
(Hershkowitz et al., 1996 in Hershkowitz et al., 2001, p. 203).

(b) The interpretation of abstraction level as reflection of the process–
object duality is based on the process–object duality, suggested by sev-
eral theories of concept development in mathematics education (Beth
and Piaget, 1966; Dubinsky, 1991; Sfard, 1991, 1992; Thompson,
1985). Some of these theories, such as the APOS (action, process,
object and scheme) theory, suggest a more elaborate hierarchy (cf.
Dubinsky, 1991). However, for our discussion it is sufficient to focus
on the process–object duality. Theories that are based on this duality
distinguish between a process conception and an object conception of
mathematical notions, and, despite the differences, agree that when a
mathematical concept is learned, its conception as a process precedes –
and is less abstract than – its conception as an object (Sfard, 1991).
Thus, process conception of a mathematical concept can be interpreted
as being on a lower (i.e., reduced) level of abstraction than its concep-
tion as an object.

(c) The third interpretation of abstraction level examines abstraction by
the degree of complexity of the mathematical concept of thought. For
example, a set of elements is a more compound mathematical entity
than any particular element in the set. It does not imply automatically,
of course, that it should be more difficult to think in terms of compound
objects. The working assumption here is that the more compound an
entity is, the more abstract it is because a greater amount of detail has to
be ignored when the entity is analyzed as a whole. In this respect, this
interpretation of abstraction focuses on how students reduce abstraction
level by replacing a set with one of its elements, thereby working with
a less compound object.

The theme of reducing abstraction has been used so far for explaining
students’ conception in different areas of advanced mathematics and in
computer science. Specifically, it was utilized to analyze learners’ work
in abstract algebra (Hazzan, 1999), differential equations (Raychaudhuri,
2001), data structures (Aharoni, 1999) and computability (Hazzan, 2003b).
Hazzan (2003a) is a comprehensive report that illustrates the application
of the theme of reducing abstraction in a variety of situations and topics
taken from undergraduate mathematics and computer science. These works
demonstrate that a wide range of cognitive phenomena can be explained
by one theoretical framework. Here, we expand the applicability of the
framework of reducing abstraction to the examination of students’ learning
of school mathematics.
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4. RESEARCH METHOD

As has been previously mentioned, our aim is to illustrate the applicability
of the theme of reducing abstraction to students’ learning of topics in school
mathematics. Our data are drawn from two sources: (1) recent publications
and (2) authors’ personal experience.

(1) We have reviewed a variety of recently published articles in the math-
ematics education research literature, focusing on research that re-
ports about students’ attempts to cope with core topics from school
mathematics. The selected data are taken from the following articles:
Heirdsfield and Cooper, 2002; Kaminski, 2002; Karsenty, 2002; Knuth,
2002; Zazkis and Campbell, 1996; Zazkis et al., 2003. None of these
research works used the framework of reducing abstraction, yet we
found that the data they present can be naturally explained from the
perspective of reducing abstraction. By applying this theoretical lens
to the analysis of data that have already been analyzed using other the-
oretical perspectives, we aim to illustrate that the theme of reducing
abstraction can enrich data interpretation. We believe that this further
analysis illuminates additional aspects of learners’ understanding of
the discussed topics.

(2) For several years we have been engaged in teaching mathematics for
preservice elementary school teachers, working toward teaching cer-
tificate. Naturally, students’ work in these courses has become a major
theme in our research. Though significant part of this research has been
reported elsewhere and included in (1), we focus here on a few excerpts
that have not been previously presented.

5. REDUCING ABSTRACTION IN SCHOOL MATHEMATICS

We do not claim that any phenomenon can be explained from the perspec-
tive of reducing abstraction. However, we attempt to illustrate the appli-
cability of the theme of reducing abstraction to a variety of topics from
school mathematics. To do this, in this section we analyze a wide range
of carefully selected examples (of the two kinds of data described in the
previous section), by utilizing the framework of reducing abstraction, il-
luminating the three ways by which abstraction level may be reduced. In
each case we specify the mathematical topic addressed and the source of the
example. With respect to the excerpts of data taken from the mathematics
education research literature, we first describe the research work presented
in the original articles and the suggested analysis of the specific excerpts
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as it is presented in these articles. Then, we analyze the excerpt from the
perspective of reducing abstraction.

Although the following examples are presented according to the three
interpretations for levels of abstraction, this classification is somehow am-
biguous. In other words, it is sometimes possible to describe a specific
example of learners’ behavior using different interpretations of reducing
abstraction. We highlight this in Example 11 which is explained using
three different perspectives on reducing the level of abstraction presented
in this article. Other examples are presented according to a category that
we perceive most appropriate.

(a) Quality of the relationships between the object of thought and the
thinking person

Example 1: Linear functions (Karsenty, 2002)
Karsenty (2002) explores what adults remember from high school mathe-
matics. She addresses this question focusing on linear functions. Responses
to the task of drawing the graph of linear functions such as y = 2x , were
documented and categorized. As it turns out, in many of these responses,
the mathematical notion of linear graphing was replaced with personal on-
the-spot constructing of ideas. The analysis presented in Karsenty’s article
is based on theories that explain the mechanism of recalling in terms of
reconstruction versus reproduction.

We suggest that the data gathered in Karsenty’s research are suitable
for being analyzed through the lens of reducing abstraction in general and
the interpretation of abstraction discussed in this section in particular. As
it turns out, several of the adults participating in Karsenty’s research could
not make sense of the tasks presented to them; hence, all they could do was
to rely on any familiar notions they found in the task, that is, to base their
solution on an object with which they were familiar.

Here is one excerpt of data and its interpretation. Figure 1 presents Dov’s
attempts to draw the function y = x (Karsenty, 2002, p. 127).

Figure 1. Dov’s sketch for the function y = x (Karsenty, 2002, p. 127).
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Karsenty rightly categorizes this response as “describing the function
through equality between shapes and line segments.” It is quite clear that
Dov could not make sense of the task presented to him, and accordingly,
all he could produce was a sketch that reflects some notion of equality. An
examination from the perspective of reducing abstraction may reveal that
this sketch is based on recalling that lines should appear in the graphing
of expressions such as y = x . It is suggested that Dov could make sense
of the notion of two parallel equal segments. Thus, relying on a familiar
situation, Dov abandoned the unfamiliar object (the graph of y = x) and
turned to face a familiar situation (two equal segments) of which he could
make sense. Thus, the abstraction level is reduced.

Example 2: Different bases (Personal experience)
This example is taken from an interview with Sue, a preservice elementary
school teacher who was introduced to the idea of calculation in bases other
than ten.

Int: We’re in base five now. Can you add 12 and 14 (read: one-two
and one-four) in base 5?

Sue: 12 (read: one-two) in base five is what? 7, yea, 5, 6, 7 and 14
(one-four) would be 9. So together this is 16.

Int: Is this in base 5?
Sue: Oh - no. I have to put this back into base 5. So 10 is 5, and we

go 11, 12 (read: one-one, one-two, etc), 13, 14, 20. . . So I see,
20 is 10, and 30 will be 15 so 16 is 31, three-one base 5.

The reduction of the level of abstraction is illustrated by Sue’s tendency
to retreat to the familiar base ten when asked to solve problems in terms
of other bases. Since base ten is a familiar base with which students work
through their entire school mathematics, this example refers to the rela-
tionships between the object of thought and the learner. Different bases
are often used in courses for elementary school teachers to reinforce the
common algorithms for multi-digit addition and subtraction and to create
appreciation for the meaning of “carrying” and ”borrowing,” rather than just
to perform these operations automatically following learned rules. How-
ever, as the above excerpt illustrates, Sue successfully avoids addition in
base 5 by converting back to base 10, performing the operation in base 10
and then calculating the result in base 5. Her solution can be interpreted as
an act of reducing abstraction from the unfamiliar base-5-addition to the
familiar base-10-addition via conversion, which she achieved by counting
and matching. From the perspective of abstraction presented in this section,
abstraction level is reduced.
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Example 3: Number sense (Kaminski, 2002)
Kaminski (2002) reports on pre-service primary teacher education stu-
dents’ involvement in a Number Sense program that was a component of a
mathematics education unit. Kaminski’s paper presents many observations
focusing on class interaction. For example, the following quote refers to
the specific phenomena of multiplication by zero:

“When discussing factors and exploring 76 × 34 × 0 × 17, Madie
gained an insight into a long held misconception. Although 7 × 0 produces
0, the use of zero in the above four-term expression had been assumed by
her for many years to indicate ‘there was nothing to be multiplied by in the
position occupied by zero.’ Her solution was thus the result of multiplying
76 × 34 × 17” (p. 137–138).

Kaminski explains that Madie’s solution is caused by a misconception.
Using the perspective of reducing abstraction we suggest two possible
sources for this misconception.

First, it could be that Madie’s interpretation for “the position occupied
by zero” is influenced by her awareness of the positional system, that is,
place value representation of numbers. Considering the expanded nota-
tion of the positional representation – as for example interpreting 7603
as 7 × 1000 + 6 × 100 + 0 × 10 + 3 × 1 – the place value in the
position of 0 indeed can be ignored, since ”zero tens” means here “no
tens.”

Second, Madie’s treatment of zero could be borrowed from addition
exercises. When 0 is one of the addends, it indeed can be ignored. She is able
to make sense of zeros in addition situations because addition situations are
similar to real life situation: When something is empty, we ignore it. In other
words, it is suggested that an explanation that relies on abstraction levels
refers to Madie’s need and inability to give some meaning to the appearance
of 0 in multiplication exercises. As she could give such a meaning in
situations of addition and place value interpretation, she leans on such
situations and applies the same rule to multiplication.

Example 4: Conception of proofs (Knuth, 2002)
Knuth (2002) analyzes teachers’ conceptions of proofs. Though a proof
is a meta-mathematical concept, we include the analysis of its perception
through the lens of reducing abstraction for at least two reasons: First,
Knuth’s research addresses teachers’ conception of proofs. The fact that
teachers’ interpretation for the concept of proof can be interpreted as a
reduction of the level of abstraction may have, in our opinion, direct im-
plications in their teaching of proofs. Accordingly, we find it important
to illuminate from an additional perspective teachers’ conception of one
of the central and basic mathematical tools. Second, a proof is by itself
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an object which may be manipulated and worked with similarly to other
mathematical objects. Thus, we suggest, it is not a significant difference
whether a ‘regular’ mathematical object, such as a set or a function, or a
‘meta-object’ such as a proof, is discussed.

In what follows we present two teachers’ descriptions of what a for-
mal proof is, taken from Knuth’s research. They illustrate how teachers
reduce the level of abstraction by leaning on the pattern for proof, con-
ventionally used in school, with which they are familiar from their own
schooling.

Quote 1: “When I think of formal proof, I usually think of the two-column
formal proof in geometry” (p. 71).

Quote 2: “When I think of a formal proof, I think of proofs where you
have little ‘T’ (i.e., a spatial description for the organizational
structure of a two column proof)” (p. 72).

Knuth (2002) explains the source of such definitions in the following
way: “Also included in this group of nine teachers were those teachers (4)
for whom two-column proofs (i.e., proofs in which statements are written
in one column and the corresponding justifications in a second column) are
the epitome of formal proofs” (p. 71).

The analysis through the lens of reducing abstraction adds to this ex-
planation by highlighting the source for this conception. In the absence
of mental construction for the concept of a formal proof, the teachers can
only rely on their previous mathematical background, leaning on the main
context in which they met proofs. In other words, such descriptions can
be viewed as an expression of reducing abstraction by the relationships
between the object of thought and the thinking person’ interpretation, as
these teachers conceive of the concept of proof as it is expressed in one
limited context with which they are familiar, and this context represents for
them the essence of proofs. Such a look may limit their ability to observe
the essential characteristics of a proof.

(b) Process-object duality

Hazzan’s (1999) contribution to the ongoing discussion about the process–
object duality has highlighted two possible expressions of process con-
ception of mathematical concepts, namely (a) students’ personalization of
formal expressions and logical arguments by using first-person language,
and (b) students’ tendency to work with canonical procedures in problem
solving situations. Here, we illustrate the second expression with respect
to school mathematics.
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The term canonical procedure refers to a procedure that is more or
less automatically triggered by a given problem. This can happen either
because the procedure is naturally suggested by the nature of the problem,
or because prior training has firmly linked a specific kind of problem with
a specific procedure. The availability of a canonical procedure enables
students to solve problems without analyzing properties of mathematical
concepts, that is, to exhibit object conception, and to follow automatically
the step-by-step algorithm that the canonical procedure provides.

One of the sources of students’ tendency to use canonical algorithms
is the intensive practice of solving the same kind of mathematical prob-
lems in class. As it turns out, this “step-by-step approach designed to yield
mastery of the subject matter had the unfortunate consequence that stu-
dents came to view themselves as the passive consumers of others’ math-
ematics” (Schoenfeld, 1989, p. 341). Consequently, “students (feel) very
strongly that mathematics always gives a rule to follow to solve problems”
(Carpenter et al., 1983, pp. 656–657).

In what follows we present two examples for data analysis through
the process–object duality interpretation of reducing abstraction. Though
a wide variety of data is analyzed in the mathematics education research
literature focusing on the process-object duality, our intention in presenting
these examples is to illustrate how this analysis of data can be incorporated
in a wider theoretical framework of analyzing learners’ understanding of
mathematical concepts.

Example 5: Elementary number theory (Zazkis and Campbell, 1996)
Zazkis and Campbell (1996) research preservice teachers’ understanding
of natural numbers, focusing on the properties of divisibility and multi-
plicative structure. In the following excerpt the preservice teacher works
with the concept of divisibility.

Int: Consider the following number 33× 52× 7. We’ll talk about it
a bit, so let’s call it M . Is M divisible by 7, what do you think?

Mia: OK, I’ll have to solve for M . . . [pause] Yes, it does.
Int: Would you please explain, what were you doing with your cal-

culator?
Mia: I solved and this, this is 1575, and divided by 7 gives 225. Like

it gives no decimal so 7 goes into it.

The tendency of students to calculate rather than attend to the structure of
the number as represented in its prime decomposition has been discussed
in detail in Zazkis and Campbell (1996). It has been reported that even
students who are able to conclude divisibility of M by prime factors (in our
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case 3, 5 and 7) based on its structure, tend to calculation when prime non-
factors (such as 11) or composite factors (such as 15 or 63) are in question.
From the perspective of the process–object duality, these students reduce
the level of abstraction by considering the process of divisibility, which
is, attaining a whole number result in division, rather than analyzing the
object of divisibility, which is a property of whole numbers that can be
considered independently of any specific implementation of division.

Example 6: Addition and subtraction (Heirdsfield and Cooper, 2002)
Heirdsfield and Cooper report a study that focuses on two children’s mental
computation in addition and subtraction. Interviews were used to identify
children’s knowledge and ability with respect to number sense (including
numeration, number and operations, basic facts, estimation), metacognition
and affects. Both students were identified as being accurate. However, one
student used a variety of mental strategies (was flexible) whereas the other
student used only one strategy which reflected the written procedure for
each of the addition and subtraction algorithms taught in the classroom.

Frameworks were developed to explain the two types of accuracy in
mental addition and subtraction. Flexible accuracy was related to the pres-
ence of strong number sense knowledge integrated with metacognitive
strategies and beliefs about self and teaching; whereas inflexible accuracy
was a result of compensation of inadequate knowledge supported by beliefs
about self and teaching.

The researchers focused on two students, Clare and Mandy. “The mental
computation strategies used by Clare included separation (left to right and
right to left) and wholistic. These strategies revealed numeration under-
standing, knowledge of the effect of operation on number, employment of
estimation, and facility with number facts” (p. 61). “Mandy, like Clare was
accurate in mental computation, but consistently employed mental image
of the pen and paper algorithm (i.e., she imagined the numbers one under
the other, as if using pen and paper). The individual numbers were first
separated into place values and then operated on by moving right to left”
(p. 65). The authors explain that “[i]t is posited that [. . . ] Mandy used a
procedure similar to the pen and paper algorithm, which required little un-
derstanding and with which she was very familiar. Further, Mandy’s con-
fidence in teacher–taught procedures resulted in her not seeing the need
to develop understanding and more efficient strategies in other areas, as
well. Thus, her beliefs also contributed to her satisfaction with the auto-
matic traditional algorithm as her only strategy for mental computation”
(p. 68).

We suggest that the above explanation fits very well into the frame-
work of reducing abstraction in general and the process–object duality in
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particular. By applying these algorithms canonically, without referring to
the properties of the objects under the examination, learners avoid treating
the involved concepts as objects. That is, concepts are not thought about
and manipulated through their properties (as an abstract approach would
suggest), but rather, the abstraction level is reduced and problems are solved
by using canonical algorithms.

(c) Degree of complexity of mathematical concepts

Example 7: Elementary number theory (Zazkis and Campbell, 1996)
The following excerpt is taken from the aforementioned study on preser-
vice elementary school teachers’ understanding of divisibility of natural
numbers (Example 5).

Int: Do you think there is a number between 12358 and 12368
that is divisible by 7?

Nicole: I’ll have to try them all, to divide them all, to make sure.
Can I use my calculator?

Int: Yes, you may, but in a minute. Before you do the divisions,
what is your guess?

Nicole: I really don’t know. If it were 3 or 9, I could sum up the
digits. But for 7 we didn’t have anything like that. So I will
have to divide them all.

Using the APOS (Action-Process-Object-Schema) theory (Dubinsky,
1991) the authors explained that Nicole had an ‘action’ conception of
divisibility that is expressed by the need to carry out division explicitly
to make a decision. At the next (process) stage the action can be imag-
ined; however, with respect to divisibility, Nicole has not yet reached this
stage.

From the perspective of reducing abstraction discussed in this section
we suggest the following observation: Nicole wishes to find a number,
divisible by 7, between the two given numbers, in order to claim its exis-
tence. While the task invites the consideration of an interval of 10 numbers,
Nicole checks for divisibility of each number separately. In doing so she
is considering particular numbers, rather than a more complex object, a
set or interval of numbers. Therefore, the abstraction level is reduced: a
property of a set is being examined by checking a property of each of its
elements.

Example 8: Conception of proofs (Knuth, 2002)
Knuth’s research (2002) about teachers’ conceptions of proofs in the con-
text of secondary school mathematics (see Example 4), observed also that
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in lower level mathematics classes teachers accept informal proofs (i.e.,
empirically based arguments) as proof. The following teacher’s comment
is a representative explanation for this phenomenon: ”When they say I
noticed this pattern and I tested it out for quite a few cases; you tell them
good job. For them, that’s a proof. You don’t bother them with these gen-
eral cases” (Knuth, 2000, p. 76). Based on Harel and Sowder’s (1998)
analysis of empirical proof schemes, Knuth explains that “[a]n unfortu-
nate consequence of such instruction, however, is that students may de-
velop the belief that the verification of several examples constitutes proof”
(p. 76).

We suggest that such a conception indicates a reduction in the complex-
ity of the object of proof. This is derived from the fact that an argument is
accepted as a proof of a specific theorem only when it is correct for any
object that meets the conditions described in the theorem, not just for a
specific set of objects for which the theorem is checked explicitly. From
the perspective of reducing abstraction, learners’ acceptance of a finite set
of checks as a proof, is explained by their inability to construct, based on
these specific checks, the object of proof, which is a more compound object
that captures within it, among other cases, the specific instances that the
learners checked explicitly.

This acceptance can be explained as means to cope with situations that
require mental structures that have not yet been constructed in learners’
mind. This statement is valid whether we talk about elementary, middle,
high school or undergraduate mathematics. What may vary is the complex-
ity and nature of objects for which learners are unable to construct mental
structures. Although in more elementary mathematics this may be geomet-
rical structure or number schemes, in more advanced mathematics these
objects may be groups, differential equations or proofs. Still, the essence
of the mental process is similar.

Example 9: Linear functions (Karsenty, 2002)
Example 1 addresses a response that Karsenty (2002) has classified in the
category “Describing the function through equality between shapes and line
segments.” It provided an alternative analysis based on the interpretation
of reducing abstraction by relying on familiar objects. Here we consider a
response by another participant, Amira, which was classified by Karsenty
in the category “Marking only one point in a coordinate system.” In what
follows we demonstrate how this example illustrates reduction of the level
of abstraction by reducing the complexity of the object of though.

Amira is asked to draw the function y = x . ”In response, she sketches a
Cartesian axes system and marked the point (1, 1)” (p. 125). Here is Amira’s
reasoning: “You said that x is equal to y, and if this is x and this is y, and
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these are the positive points, and this is 1 and this is 1, so let’s say I did
it in the middle” (p. 125). Karsenty explains that this “response suggests
that the request to draw the graph of y = x is interpreted as “solving”,
i.e., finding a point in the Cartesian plane where y is indeed equal to x .
The point marked is an arbitrary representative of solutions to the equation
y = x” (p. 125).

We add to this interpretation, explaining it from the perspective of re-
ducing abstraction described in this section. A function is a collection of
ordered pairs that satisfy a given connection. This collection may be finite
or infinite (pending on the function definition). In our case (y = x) the
collection of ordered pairs is infinite. Accordingly, to grasp the essence of
the graphic representation of the function, one has to construct mentally
the object of an infinite set of ordered pairs.

In the present example, it seems that Amira remembered little from
her school mathematics. Particularly, she could not follow any canonical
algorithm to solve the problem she encountered. In such a case, when she
lacked either any mental structure to lean on or any canonical procedure to
follow, she could express this relation between x and y by pointing to one
specific ordered pair. In other words, she replaced the infinite set of ordered
pairs (which represents the function) with one ordered pair. As one ordered
pair is clearly a less complex object than an infinite set of ordered pairs,
according to the interpretation of abstraction described in this section, the
level of abstraction is reduced.

Example 10: Translation of functions (Zazkis et al., 2003)
Zazkis et al., (2003) describe students’ mental processes when they have
to consider function transformation, that is, an operation that is applied to
functions. The research focuses on horizontal translations and it describes
participants’ difficulty to explain the spatial location of (b) y = (x – 3)2

in relation to (a) y = x2. More specifically, participants acknowledge a
conflict between the expectation that the graph of (b) should be located
to the left of (a) and the knowledge (or realization, having checked the
prediction) that it is located to the right of (a) when plotted on the same
coordinate system.

Initially the authors use the notion of “obstacle” – either cognitive or
epistemological – to explain participants’ difficulty, identifying “tendency
to generalize and possibly deceptive intuitions” as contributing constraints.
Further, the authors strengthen their explanation by referring explicitly to
the theme of reducing abstraction. They claim that the main source of
difficulty here is in seeing the algebraic replacement (x moves to x – 3) as
a transformation and trying to infer the geometric transformation, that is,
the movement of the graph, from the algebraic substitution. That is to say
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that the transformation f (x) �→ f (x - 3) is simplified to be considered as
x �→ (x − 3). In other words, students’ attention is placed on the object
of a variable (x) rather than on the more compound (hence, more abstract)
object of a function ( f (x)). As a function is a more compound object than
a variable, this behavior can be considered as a reduction of the level of
abstraction by the interpretation of abstraction presented in this section.

(d) Multifaceted examination from the perspective of reducing abstraction

Noss and Hoyles (1996) state that “[t]here is more than one kind of ab-
straction” (p. 49). Consequently, in this section we illustrate that there is
more than one way to reduce the level of abstraction and more than one
way to describe a learner’s activity in terms of reducing abstraction level.

Example 11: Conversion of area units (personal experience)
As mentioned earlier, the classification of ways in which learner’s reduce
abstraction is neither exhaustive nor mutually exclusive. Consider for ex-
ample the following problem:

A length of 3 cm on a scale model corresponds to a length of 10 m in a park.
A lake in the park has an area of 3600 m2. What is the area of the lake in the
model?

In her solution, Brenda assigned the dimensions 90 × 40 to the lake,
converted each length separately and then calculated the area of lake in
the model. Some of her classmates considered the lake to be a 36 × 100
rectangle or a 60 × 60 square. For most students, the random assignments
of units and even the random restriction of the lake shape to either a square
or a rectangle, still led to a correct answer. However, no one could explain
why the final calculation of the area was not influenced by and specific
choice of shape and measurements.

The task in this example was aimed at testing students’ abilities to
perform the conversion of square units. Regression to the units of length
can be interpreted as reducing abstraction in several ways: In accordance
with interpretation (c) of reducing abstraction, the assignment of units of
lengths provides learners with a lesser degree of complexity of the object
of thought. That is, it provides an opportunity to deal with one particular
object rather than with any object of a given area. In accordance with
interpretation (a) for reducing abstraction, the measures of lengths could
have been perceived as more familiar, and therefore less abstract, than
the measures of area. In accordance with interpretation (b) for reducing
abstraction, the description of the area as a specific multiplication of two
sizes, can be interpreted as students’ conception of area as a process, rather
than as an object that assigns a measure to a shape. In either case, students’
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regression to the units of length is a way of coping with the abstraction
level presented by the task.

6. CONCLUSION

In this article we have enriched the ongoing discussion on the role of ab-
straction in learning mathematics by providing a different perspective on
the notion, namely, reducing abstraction. Specifically, we have shown a
wide range of strategies in dealing with presented tasks that can be in-
terpreted as an act of “reducing the level of abstraction.” The particular
examples, taken from the core topics of school mathematics, ranged from
early elementary addition and subtraction to upper secondary functions and
transformations of functions.

Our contribution is two-fold: (a) we expand the applicability scope
of abstraction theories in general and of reducing abstraction in partic-
ular by focusing on school mathematics, and (b) we extend the appli-
cability of the theory by discussing mathematical meta-objects, such as
the concept of proof. We suggest that the lens of reducing abstraction
may be an applicable perspective for the analysis of the understand-
ing of a wide collection of additional meta-objects, such as hypothesis,
axiom, geometrical construction, etc. Future research will examine this
applicability.

Schoenfeld (1998) proposed four major criteria for judging theories
and models that embody them: descriptive power, explanatory power, pre-
dictive power and scope of applicability. We believe that the theory of
reducing abstraction meets each of these criteria. First, it provides a lens
for describing students’ mental processes when facing problem–solving
situations in which they are unable to cope at the expected level of abstrac-
tion. Second, the theory of reducing abstraction explains the mechanism
by which students attempt or manage to cope with these situations, cap-
italizing on several interpretations of abstraction previously described in
mathematics education literature. Third, the predictive power of the the-
ory manifested itself in this article. That is, having previously applied the
theory to topics in undergraduate mathematics and computer science, we
predicted that it could illuminate students’ behavior in dealing with math-
ematics at the school level and found a variety of examples to substantiate
this prediction. Finally, the wide scope of applicability of this theory is
expressed by the fact that it encapsulates under one umbrella a variety of
phenomena. We extended this scope further by considering topics in school
mathematics.

As stated earlier, the theme of reducing abstraction evolved from exam-
ining different interpretations for the level of abstraction discussed in the
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literature. However, the continuous evolution and refinement of the theories
of abstraction in mathematics education may lead to further development
and refinement of our framework.

We conclude by inviting the readers to examine their own observations of
learners’ mathematical encounters through the lens of reducing abstraction.
This may include informal encounters with students’ interpretations in
learning or problem–solving situations or re-examination of previously
analyzed data though a different perspective.
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